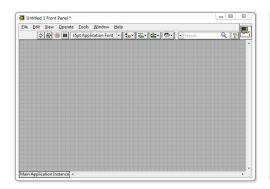
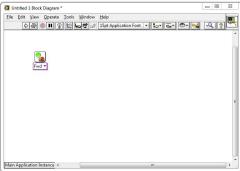

#### **Robotics 2017-2018 Final Exam**

#### **Andrew Morin and Jacob Carpenter**

### 1. What is the difference between a Robot Project and a Virtual Instrument?


| Robot Project | ▼ |
|---------------|---|
|               |   |


features an enhanced interface that allows you to configure and test your robot without a program, as well organize multiple program files in one place.



contains a single Front Panel and Block Diagram, and can be used to create a single program and interface.

#### 2. For this question, refer to the two pictures below:





- a. What is the window on the left with the grey background called?
- The Block Diagram
  - <sup>©</sup> The Main Menu
  - <sup>©</sup> The Program Field
  - The Front Panel

- b. What is the window on the right with the white background called?
- The Block Diagram
  - <sup>©</sup> The Main Menu
  - <sup>C</sup> The Program Field
  - <sup>C</sup> The Front Panel
  - c. Which window do you drag VIs into, to give the robot movement commands?
- <sup>C</sup> The Front Panel
  - <sup>©</sup> The Program Field
  - The Block Diagram
  - The Code Schematic (not shown above)



#### 3. What is this called? Fwd

- <sup>C</sup> A Movement VI
  - A Motor Control VI
  - C A Forward VI
  - <sup>C</sup> The Block Diagram
- 4. If you want to add a Motor VI to your program...
  - a. Where can you find one?
- <sup>C</sup> In the Tools Palette
  - In the Functions Palette

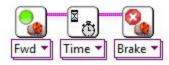
- Type the word "Motor" and press enter
- In bar on the left hand side of the screen
- b. How do you add it to your program?
- Double-click the Motor VI in the Functions Palette
  - O Drag the Motor VI to the Front Panel
  - C Drag the Motor VI to the Block Diagram

#### 55. How do you open the Functions Palette?

- C Right-click an empty area of the Block Diagram
  - Select Functions Palette from the View menu
  - Both of the above
  - None of the above



### 56. What command does this block give the robot? Fwd

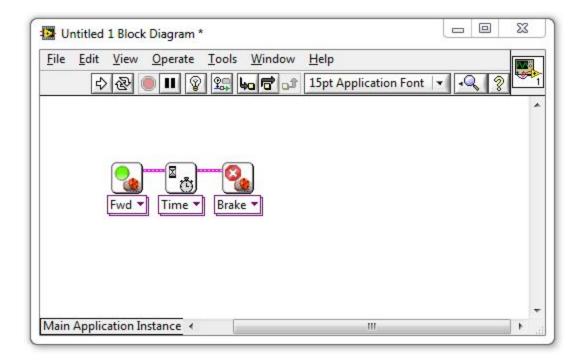

- Forward a message to the robot
  - <sup>C</sup> Turn the motors on in the forward direction
  - <sup>©</sup> Wait for 1 second
  - <sup>©</sup> Stop the motors



#### 7. What command does this block give the robot? Brake

- <sup>©</sup> Make the robot fall apart
  - Turn the motors on in the foward direction
  - Wait for 1 second
  - <sup>©</sup> Stop the motors

#### 8. What does the pink wire indicate in this program?




- The blocks were dropped too close together
  - C LabVIEW is currently running the commands
  - <sup>C</sup> The commands will take place in order they are connected from left to right
  - This is the Primary Command Sequence for the robot

## 5. 9. The two blocks shown below were dropped far apart and did not auto-wire. How do you connect them?

- <sup>C</sup> Click their top corners and use the wiring tool to connect them
  - Drag them closer together until the auto-wire appears
  - Right-click the first block and select "Wire to Nearest"
  - You can't wire them together if you miss the first time
  - **6.** 10. Which button in the picture below that Runs the program.

**The First Arrow** 



#### 11. What is a Constant (also called a Constant Modifier)?

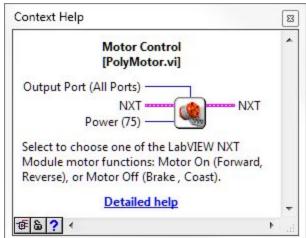
- A command that tells the robot to hold its position
  - Any command given to the robot that does not change its heading
  - Another name for a Variable Block
  - <sup>C</sup> A "thing" representing a specific value, which can be wired into Blocks

### 12. How do you set a motor to run for 5 seconds instead of 1?

- Click the Motor Block and change the Duration setting to 5
  - Wire a Constant with a "5" in it into a Motor Block's "Time" port
  - <sup>©</sup> Create a Constant with a "5" in it and drag it on top of the Motor Block
  - <sup>©</sup> Drop a 5 Second Motor Block on the Block Diagram instead

# 13. Where would you check to see what settings are available on a block and what they do?

- <sup>C</sup> Context Help window
  - <sup>C</sup> Block Diagram
  - Front Panel
  - Main Menu




### What ports are the robot's motors attached to on the default REM model?

- C Left Motor=A, Right Motor=B
  - Left Motor=B, Right Motor=C
  - Left Motor=C, Right Motor=B
  - Wheel Motors=C, Arm Motor=B

#### 14. Why are Rotations generally better than Time?

- <sup>©</sup> The robot's clock is inaccurate
  - <sup>C</sup> The wheels spin more freely
  - Rotations always go the same distance regardless of speed or battery level
  - You cannot set the number of seconds the robot waits



**15.** 

# According to this picture from the Context Help menu, which of the following things can NOT be chosen on a Motor Block?

- How long to keep the motors running
  - Which motor ports to give the command on
  - How much power to give the motors
  - <sup>©</sup> All of the above can be set on the Motor Block
  - 16. Based on the same picture from the Context Help menu in question 4, what is the default value for the Power setting on the Motor Block?

- C 75
  C 100
  C All Ports
  C No default
- 18. How do you make a program that can run on the NXT without needing to be hooked up to the main computer?
- Select "Target to NXT" from the File menu
  - Select "Send to NXT" from the Tools Menu
  - Choose "Run on NXT" from the NXT's LCD screen interface
  - C LabVIEW programs cannot be run that way
  - 19. Once you have deployed the program onto the NXT, how do you run it?
- On the NXT: Program Files > Run
  - On the NXT: My Files > Software File > (Name of .VI file) > Run
  - On the PC/Mac: File > Run Deployed Program
  - On the NXT: grey button labeled "Run Deployed"

#### 20. A robot turns when...

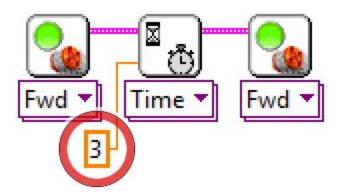
- <sup>C</sup> Its wheels move in different direction of at different speeds
  - You use a Motor Block set to Turn
  - <sup>©</sup> You move the Steering slider to the left or right of center
  - <sup>C</sup> Its wheels move together at the same speed
  - 21. If the robot's left motor goes forward while its right motor goes in reverse, how will the robot's body move?

<sup>C</sup> Turn to the left <sup>C</sup> Turn to the right O Move straight ahead <sup>©</sup> Make an outward spiral 22. To make the robot turn... Change "Fwd" to "Turn" on the Motor Block Move the steering slider to the left or right <sup>©</sup> Make an outward spiral <sup>C</sup> Give its wheels different movement commands 23. If you don't specify a motor, what does the Motor Block

### default to?

- <sup>C</sup> Motor/Port A
  - O Motor/Port B
  - O Motor/Port C
  - <sup>C</sup> All motors/ports

### 24. To specify which motors a Motor Block controls, you:


- Attach a Constant modifier to the Output Ports node
  - Change "Fwd" to the name of the motor you want
  - Use a "Motor A Block" instead
  - Select the Motor Block and type the letter of motor you want (A, B, or C)

#### 25. How do you remove a wire?

- Orag the blocks apart until the wire breaks
  - Click on the wire and press delete
  - Use the scissors tool to cut the wire
  - C Hold down the mouse button and scratch it out

## 26. What does the Sequence Structure do?

- Let the program choose between multiple "frames" of code to run
  - C Let the program repeat "frames" of code more than once
  - C Let you hide code that you don't want to run
  - Allow "phases" of code to run in sequence even if individual phases involve parallelism



#### 27. What is the value of this Constant circled in red above?

○ 0

ි 3

○ <sub>∠</sub>

No value

# 27.28How is the circled Constant being interpreted by the program?

- <sup>C</sup> As a command to wait
  - <sup>©</sup> As number of port
  - As a number of rotations
  - <sup>©</sup> As number of seconds

#### 28. Why is it being interpreted this way?

- Because it is providing its value to the Wait Block
  - <sup>©</sup> Because it is providing its value to the "Seconds" terminal on the Wait Block
  - <sup>C</sup> All constants are interpreted the same way
  - <sup>©</sup> Because the value is an integer

### 29. What does the Light Sensor detect?

- <sup>C</sup> Length of darkness
  - Intensity of red light
  - C Robot's weight
  - <sup>©</sup> Robot's speed

# 30. Which would produce a HIGHER light sensor reading with a light sensor pointed at it: a dark surface or a light surface?

- <sup>C</sup> The light surface
  - The dark surface.
  - Both the same
  - No reliable pattern

#### How do you view the numeric values coming from the sensor?

- Attach a digital lead to the robot
  - Use the View Mode on the NXT screen
  - Click on the Sensor Block in LabVIEW
  - C Look closely at the back of the sensor

### 32. What Block tells the robot to wait for a Light Sensor reading lower than a certain cutoff threshold?

- Wait Block set to Wait for Light > Darkness
  - Sensor Block set to Light Sensor > Darkness
  - <sup>C</sup> Wait Block set to Wait for Light > Darker
  - Wait Block set to Wait for Light > Lightness

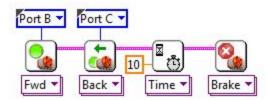
#### 33. How do you calculate a suitable Light Sensor threshold value?

- Use the value from the Light surface
  - Use the value from the Dark surface
  - Use the Find Threshold Block in LabVIEW
  - <sup>©</sup> Halfway between Light and Dark values

## 34. How do you specify the cutoff value for determining "Dark" from "Light"?

- With a Light Sensor Modifier attached to the Threshold wiring node on the Motor Stop Block
  - Activating View Mode automatically stores the correct value

- <sup>©</sup> With a Constant Modifier attached to the "Darkness" wiring node on the Wait Block
- <sup>C</sup> By clicking the Wait Block and typing in the value

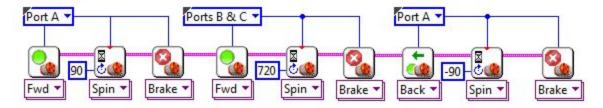

#### 35. What does the Sound Sensor measure?

- Sound wavelength (pitch)
  - Sound intensity (volume)
  - Sound frequency (pitch)
  - <sup>C</sup> Distance to the nearest object

## 36. How do you specify the cutoff value for determining "Loud" from "Quiet"?

- With a Constant Modifier attached to the "Loudness" wiring node on the Wait Block
  - Activating View Mode automatically stores the correct value
  - With a Sound Sensor Modifier attached to the Threshold wiring node on the Motor Stop Block
  - By clicking the Wait Block and typing in the value

### 37. Describe this program, block by block.

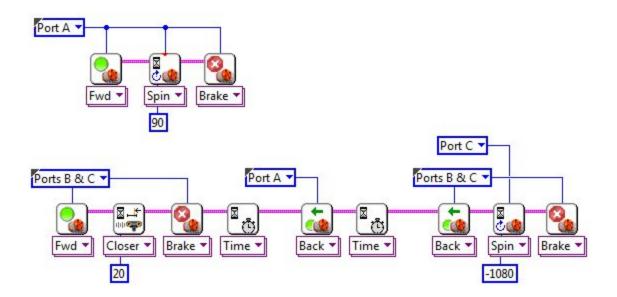



- Move forward on Port B, move reverse on Port C, wait for 10 seconds, stop
  - Move reverse on Port B, move forward on Port C, wait for 10 seconds, stop
  - Move forward on Port C, move reverse on Port B, wait for 10 seconds, stop
  - <sup>C</sup> Move forward on Port B, move reverse on Port C, wait for 10 milliseconds, stop Port A

### 38. What will the program do to the robot?

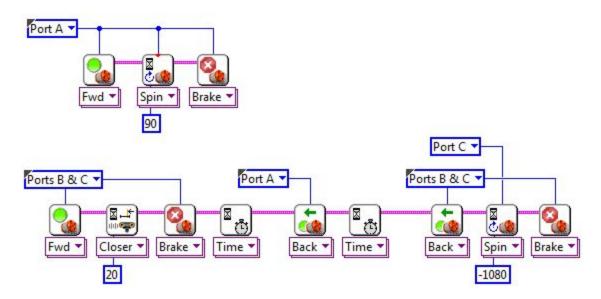
- Move reverse for 10 seconds
  - Move forward for 10 seconds.
  - Swing turn for 10 seconds
  - O Point turn for 10 seconds

#### 39. Describe this program, by sequence.




- Closes claws, move forward for 2 rotations, then opens claw
  - Opens claws, move forward for 2 rotations, then closes claw
  - Opens claws, move backwards for 2 rotations, then closes claw
  - Opens claws, move forward for 2 degrees rotation, then closes claw

### 40. What does it mean for two strands of code to run "in parallel"?


- $^{\mbox{\tiny C}}$  They are placed side-by-side on the diagram
  - They both START running at the same time
  - <sup>C</sup> They both START AND STOP running together
  - They take turns running blocks

#### 41. These two strands of code run in parallel because



- They both contain Motor Blocks
  - They are placed side-by-side on the diagram
  - Both are independent strands with no wire leading into them

#### 42. When this first strand of code finishes, the second strand:



- <sup>©</sup> Is unaffected because the two are independent
  - Stops immediately
  - Starts running twice as fast
  - Skips ahead to the last block in its strand

#### 43. What does the Sequence Structure do?

- <sup>©</sup> Let the program choose between multiple "frames" of code to run
  - C Let the program repeat "frames" of code more than once
  - Let you hide code that you don't want to run
  - Allow "phases" of code to run in sequence even if individual phases involve parallelism